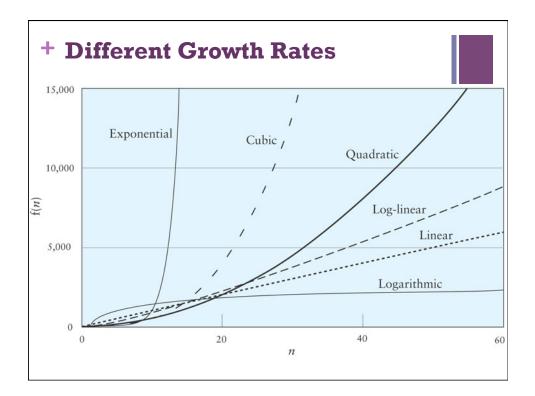


+ Symbols Used in Quantifying Performance

Symbol	Meaning	
T(n)	The time that a method or program takes as a function of the number of inputs, n . We may not be able to measure or determine this exactly.	
f(<i>n</i>)	Any function of <i>n</i> . Generally, $f(n)$ will represent a simpler function than $T(n)$, for example, n^2 rather than $1.5n^2 - 1.5n$.	
O (f(<i>n</i>))	Order of magnitude. $O(f(n))$ is the set of functions that grow no faster than $f(n)$. We say that $T(n) = O(f(n))$ to indicate that the growth of $T(n)$ is bounded by the growth of $f(n)$.	

+ Comm	on Grow	vth Rates	
	Big-O	Name	
	O (1)	Constant	
	$O(\log n)$	Logarithmic	
	O (<i>n</i>)	Linear	
	$O(n \log n)$	Log-linear	
	$O(n^2)$	Quadratic	
	O (<i>n</i> ³)	Cubic	
	O (2 ^{<i>n</i>})	Exponential	
	O(<i>n</i> !)	Factorial	



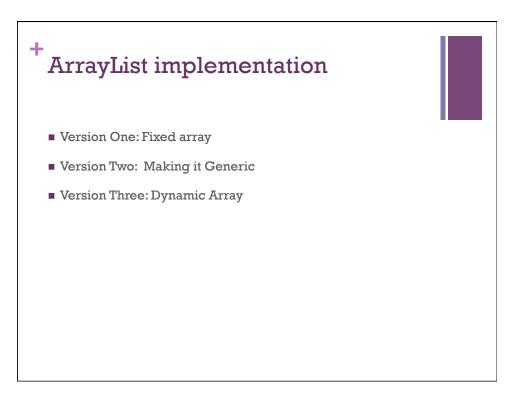
Effects of Different Growth Rates					
O(f(<i>n</i>))	f(50)	f(100)	 f(100)∕f(50)		
O (1)	1	1	1		
$O(\log n)$	5.64	6.64	1.18		
O (<i>n</i>)	50	100	2		
$O(n \log n)$	282	664	2.35		
$O(n^2)$	2500	10,000	4		
$O(n^3)$	12,500	100,000	8		
O(2 ⁿ)	1.126×10^{15}	1.27×10^{30}	1.126×10^{15}		
O(<i>n</i> !)	3.0×10^{64}	9.3×10^{157}	3.1×10^{93}		

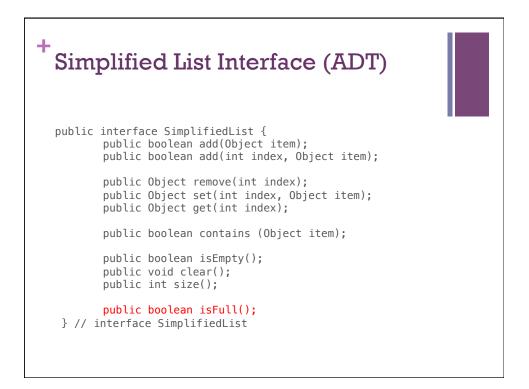
+ Algorithms with Exponential and Factorial Growth Rates

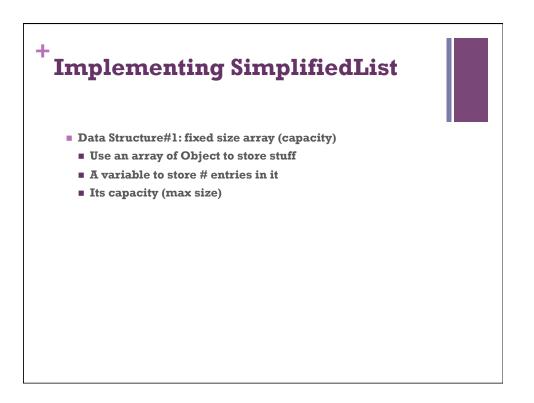
- Algorithms with exponential and factorial growth rates have an effective practical limit on the size of the problem they can be used to solve
- With an O(2^{*n*}) algorithm, if 100 inputs takes an hour then,
 - 101 inputs will take 2 hours
 - 105 inputs will take 32 hours
 - 114 inputs will take 16,384 hours (almost 2 years!)

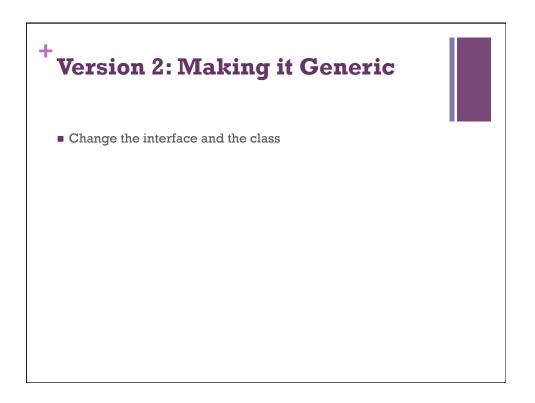
+ Algorithms with Exponential and Factorial Growth Rates (cont.)

- Encryption algorithms take advantage of this characteristic
- Some cryptographic algorithms can be broken in O(2ⁿ) time, where n is the number of bits in the key
- A key length of 40 is considered breakable by a modern computer,
- but a key length of 100 bits will take a billion-billion (10¹⁸) times longer than a key length of 40



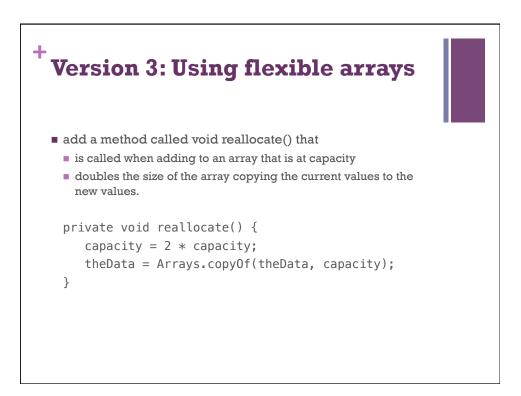






+ Simplified List Interface (ADT) <Generic>

public interface SimplifiedList<E> {
 public boolean add(E item);
 public boolean add(int index, E item);
 public E remove(int index);
 public E set(int index, E item);
 public E get(int index);
 public boolean contains (E item);
 public boolean isEmpty();
 public void clear();
 public int size();
 public boolean isFull();
} // interface SimplifiedList



+ Performance of ArrayLists						
	Fixed Size Array	Dynamic Array				
add(o)	O(1)	O(n)				
add(i, o)	O(n)	O(n)				
remove(i)	O(n)	O(n)				
set(i <i>,</i> o)	O(1)	O(1)				
get(i)	O(1)	O(1)				
contains(o)	O(n)	O(n)				
clear(), size(), isEmpty()	O(1)	O(1)				