
10/7/15	

1	

+

Algorithm Efficiency and
More List implementations

+

Section 2.4

Algorithm Efficiency and
Big-O

10/7/15	

2	

+ Algorithm Efficiency and Big-O

n Getting a precise measure of the performance of an
algorithm is difficult

n Big-O notation expresses the performance of an
algorithm as a function of the number of items to be
processed

n This permits algorithms to be compared for efficiency
n For more than a certain number of data items, some

problems cannot be solved by any computer

+ Linear Growth Rate

¨  If processing time increases in proportion to the number of inputs
n, the algorithm grows at a linear rate

public static int search(int[] x, int target) { !
 for(int i=0; i < x.length; i++) { !
 if (x[i]==target) !
 return i; !
 } !
 return -1; // target not found !
} !

10/7/15	

3	

+ Linear Growth Rate

¨  If processing time increases in proportion to the number of inputs
n, the algorithm grows at a linear rate

public static int search(int[] x, int target) { !
 for(int i=0; i < x.length; i++) { !
 if (x[i]==target) !
 return i; !
 } !
 return -1; // target not found !
} !

•  If the target is not present, the for loop will
execute x.length times

•  If the target is present the for loop will
execute (on average) (x.length + 1)/2
times

•  Therefore, the total execution time is
directly proportional to x.length

•  This is described as a growth rate of order n
OR

•  O(n)

+ n x m Growth Rate

n  Processing time can be dependent on two different inputs

public static boolean areDifferent(int[] x, int[] y) { !
 for(int i=0; i < x.length; i++) { !
 if (search(y, x[i]) != -1) !
 return false; !
 } !
 return true; !
} !

10/7/15	

4	

+ n x m Growth Rate (cont.)

n  Processing time can be dependent on two different inputs.

public static boolean areDifferent(int[] x, int[] y) { !
 for(int i=0; i < x.length; i++) { !
 if (search(y, x[i]) != -1) !
 return false; !
 } !
 return true; !
} !

•  The for loop will execute x.length times
•  But it will call search, which will execute

y.length times
•  The total execution time is proportional to

(x.length * y.length)
•  The growth rate has an order of n x m or
•  O(n x m)

+ Quadratic Growth Rate

¨  If processing time is proportional to the square of the number of
inputs n, the algorithm grows at a quadratic rate (n2)

public static boolean areUnique(int[] x) { !
 for(int i=0; i < x.length; i++) { !
 for(int j=0; j < x.length; j++) { !
 if (i != j && x[i] == x[j]) !
 return false; !
 } !
 } !
 return true; !
} !

10/7/15	

5	

+ Quadratic Growth Rate (cont.)

¨  If processing time is proportional to the square of the number of
inputs n, the algorithm grows at a quadratic rate

public static boolean areUnique(int[] x) { !
 for(int i=0; i < x.length; i++) { !
 for(int j=0; j < x.length; j++) { !
 if (i != j && x[i] == x[j]) !
 return false; !
 } !
 } !
 return true; !
} !

•  The for loop with i as index will execute
x.length times

•  The for loop with j as index will execute
x.length times

•  The total number of times the inner loop will
execute is (x.length)2

•  The growth rate has an order of n2 or
•  O(n2)

+ Big-O Notation

¨  The O() in the previous examples can be thought of as an
abbreviation of "order of magnitude"

¨  A simple way to determine the big-O notation of an algorithm is
to look at the loops and to see whether the loops are nested

¨  Assuming a loop body consists only of simple statements,
¤  a single loop is O(n)

¤  a pair of nested loops is O(n2)

¤  a nested pair of loops inside another is O(n3)

¤  and so on . . .

10/7/15	

6	

+ Big-O Notation (cont.)

¨  You must also examine the number of times a loop is executed
for(i=1; i < x.length; i *= 2) {
 // Do something with x[i]

}

¨  The loop body will execute k-1 times, with i having the following values:
 1, 2, 4, 8, 16, . . ., 2k
until 2k is greater than x.length

¨  Since 2k-1 = x.length < 2k and log22k is k, we know that k-1 =
log2(x.length) < k

¨  Thus we say the loop is O(log n) (in analyzing algorithms, we use logarithms
to the base 2)

¨  Logarithmic functions grow slowly as the number of data items n increases

+ Formal Definition of Big-O

¨  Consider the following program structure:

for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {
 Simple Statement
 }
}

for (int i = 0; i < n; i++) {
 Simple Statement 1
 Simple Statement 2
 Simple Statement 3
 Simple Statement 4
 Simple Statement 5
}
 Simple Statement 6
 Simple Statement 7
...

 Simple Statement 30

10/7/15	

7	

+ Formal Definition of Big-O (cont.)

¨  Consider the following program structure:

for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {
 Simple Statement
 }
}

for (int i = 0; i < n; i++) {
 Simple Statement 1
 Simple Statement 2
 Simple Statement 3
 Simple Statement 4
 Simple Statement 5
}
 Simple Statement 6
 Simple Statement 7
...

 Simple Statement 30

This nested loop
executes a Simple

Statement n2 times

+ Formal Definition of Big-O (cont.)

¨  Consider the following program structure:

for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {
 Simple Statement
 }
}

for (int i = 0; i < n; i++) {
 Simple Statement 1
 Simple Statement 2
 Simple Statement 3
 Simple Statement 4
 Simple Statement 5
}
 Simple Statement 6
 Simple Statement 7
...

 Simple Statement 30

This loop executes 5
Simple Statements n

times (5n)

10/7/15	

8	

+ Formal Definition of Big-O (cont.)

¨  Consider the following program structure:

for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {
 Simple Statement
 }
}

for (int i = 0; i < n; i++) {
 Simple Statement 1
 Simple Statement 2
 Simple Statement 3
 Simple Statement 4
 Simple Statement 5
}
 Simple Statement 6
 Simple Statement 7
...

 Simple Statement 30

Finally, 25 Simple
Statements are

executed

+ Formal Definition of Big-O (cont.)

¨  Consider the following program structure:

for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {
 Simple Statement
 }
}

for (int i = 0; i < n; i++) {
 Simple Statement 1
 Simple Statement 2
 Simple Statement 3
 Simple Statement 4
 Simple Statement 5
}
 Simple Statement 6
 Simple Statement 7
...

 Simple Statement 30

We can conclude that the
relationship between processing
time and n (the number of date

items processed) is:

T(n) = n2 + 5n + 25

10/7/15	

9	

+ Formal Definition of Big-O (cont.)

¨  In terms of T(n),

T(n) = O(f(n))

¨  There exist
¤  two constants, n0 and c, greater than zero, and
¤  a function, f(n),

¨  such that for all n > n0, cf(n) = T(n)

¨  In other words, as n gets sufficiently large (larger than n0), there is
some constant c for which the processing time will always be less
than or equal to cf(n)

¨  cf(n) is an upper bound on performance

+ Formal Definition of Big-O (cont.)

¨  The growth rate of f(n) will be determined by the fastest growing
term, which is the one with the largest exponent

¨  In the example, an algorithm of

O(n2 + 5n + 25)

 is more simply expressed as

O(n2)

¨  In general, it is safe to ignore all constants and to drop the lower-
order terms when determining the order of magnitude

10/7/15	

10	

+ Big-O Example 1

n  Given T(n) = n2 + 5n + 25, show that this is O(n2)

n  Find constants n0 and c so that, for all n > n0, cn2 > n2 + 5n + 25
n  Find the point where cn2 = n2 + 5n + 25

n  Let n = n0, and solve for c

c = 1 + 5/ n0, + 25/ n0
 2

n  When n0 is 5(1 + 5/5 + 25/25), c is 3

n  So, 3n2 > n2 + 5n + 25 for all n > 5

n  Other values of n0 and c also work

+ Big-O Example 1 (cont.)

10/7/15	

11	

+ Big-O Example 2

n  Programming problem 1 shows
y1 = 100 * n + 10; !
y2 = 5 * n * n + 2;

n  It asks to write a program that compares y1 and y2 for values of n
up to 100 in increments of 10

n  Before writing the code, at what value of n will y2 consistently be
greater than y1?

n  How does this relate to the problem:
n  T(n) = 5 * n * n + 2 + 100 * n + 10

n  for what values of n0 and c n*n consistently larger than T(n)

+ Big-O Example 3

n  Consider the following loop
for (int i = 0; i < n; i++) {

 for (int j = i + 1; j < n; j++) {

 3 simple statements

 }

}

n  T(n) = 3(n – 1) + 3 (n – 2) + … + 3

n  Factoring out the 3,

 3(n – 1 + n – 2 + n – 3 + … + 1)

n  1 + 2 + … + n – 1 = (n x (n-1))/2

10/7/15	

12	

+ Big-O Example 3 (cont.)

n  Therefore T(n) = 1.5n2 – 1.5n

n  When n = 0, the polynomial has the value 0

n  For values of n > 1, 1.5n2 > 1.5n2 – 1.5n

n  Therefore T(n) is O(n2) when n0 is 1 and c is 1.5

+ Big-O Example 2 (cont.)

10/7/15	

13	

+ Symbols Used in Quantifying
Performance

+ Common Growth Rates

10/7/15	

14	

+ Different Growth Rates

+ Effects of Different Growth Rates

10/7/15	

15	

+ Algorithms with Exponential and
Factorial Growth Rates

n  Algorithms with exponential and factorial growth rates have an
effective practical limit on the size of the problem they can be
used to solve

n  With an O(2n) algorithm, if 100 inputs takes an hour then,
n  101 inputs will take 2 hours

n  105 inputs will take 32 hours

n  114 inputs will take 16,384 hours (almost 2 years!)

+ Algorithms with Exponential and
Factorial Growth Rates (cont.)

n  Encryption algorithms take advantage of this characteristic

n  Some cryptographic algorithms can be broken in O(2n) time,
where n is the number of bits in the key

n  A key length of 40 is considered breakable by a modern
computer,

n  but a key length of 100 bits will take a billion-billion (1018) times
longer than a key length of 40

10/7/15	

16	

+
ArrayList implementation

n  Version One: Fixed array

n  Version Two: Making it Generic

n  Version Three: Dynamic Array

+
Simplified List Interface (ADT)

public interface SimplifiedList { !
public boolean add(Object item); !
public boolean add(int index, Object item); !

!
public Object remove(int index); !
public Object set(int index, Object item); !
public Object get(int index); !

!
public boolean contains (Object item); !

!
public boolean isEmpty(); !
public void clear(); !
public int size(); !

!
public boolean isFull(); !

 } // interface SimplifiedList!
!

10/7/15	

17	

+
Implementing SimplifiedList

n  Data Structure#1: fixed size array (capacity)

n  Use an array of Object to store stuff

n  A variable to store # entries in it

n  Its capacity (max size)

+
Version 2: Making it Generic

n  Change the interface and the class

10/7/15	

18	

+
Simplified List Interface (ADT)
<Generic>

public interface SimplifiedList<E> { !
public boolean add(E item); !
public boolean add(int index, E item); !

!
public E remove(int index); !
public E set(int index, E item); !
public E get(int index); !

!
public boolean contains (E item); !

!
public boolean isEmpty(); !
public void clear(); !
public int size(); !

!
public boolean isFull(); !

 } // interface SimplifiedList!
!

+
Version 3: Using flexible arrays

n  add a method called void reallocate() that
n  is called when adding to an array that is at capacity

n  doubles the size of the array copying the current values to the
new values.

private void reallocate() { !
 capacity = 2 * capacity; !
 theData = Arrays.copyOf(theData, capacity); !
}

10/7/15	

19	

+ Performance of ArrayLists

	 	 Fixed	 Size	 Array	 Dynamic	 Array	
add(o)	 O(1)	 O(n)	
add(i,	 o)	 O(n)	 O(n)	
remove(i)	 O(n)	 O(n)	
set(i,	 o)	 O(1)	 O(1)	
get(i)	 O(1)	 O(1)	

contains(o)	 O(n)	 O(n)	
clear(),	 size(),	
isEmpty()	

O(1)	 O(1)	

