Algorithm Efficiency and
More List implementations

Algorithm Efficiency and
Big-O

Section 2.4

10/7/15

10/7/15

+ Algorithm Efficiency and Big-O

m Getting a precise measure of the performance of an
algorithm is difficult

m Big-O notation expresses the performance of an
algorithm as a function of the number of items to be
processed

m This permits algorithms to be compared for efficiency

m For more than a certain number of data items, some
problems cannot be solved by any computer

+ Linear Growth Rate

O If processing time increases in proportion to the number of inputs
n, the algorithm grows at a linear rate

public static int search(int[] x, int target) {
for(int i=0; i < x.length; i++) {
if (x[il==target)
return i;
¥
return -1; // target not found
b

+ Linear Growth Rate

If the target is not present, the for loop will
execute x.length times
If the target is present the for loop will
execute (on average) (x.length + 1) /2
. . . times
O If processing time Therefore, the total execution time is
R elastiduVertely directly proportional to x. length
This is described as a growth rate of order n
OR
O(n)

publi¥c static int search(int[] x, int target) {
for(int i=0; i < x.length; i++) {
if (x[il==target)
return i;
¥
return -1; // target not found
b

+ n x m Growth Rate

m Processing time can be dependent on two different inputs

public static boolean areDifferent(int[] x, int[] y) {
for(int i=0; i < x.length; i++) {
if (search(y, x[i]) != -1)
return false;
¥

return true;

10/7/15

+ n x m Growth Rate (cont.)

The for loop will execute x. length times
But it will call search, which will execute
y.length times

The total execution time is proportional to
(x.length * y.length)

The growth rate has an order of n x m or
O(n x m)

m Processing time can K

public stftic boolean areDifferent(int[] x, intl[] y) {
for(int i=0; i < x.length; i++) {
if (search(y, x[i]) != -1)
return false;

b

return true;

+ Quadratic Growth Rate

O If processing time is proportional to the square of the number of
inputs n, the algorithm grows at a quadratic rate (n?)

public static boolean areUnique(int[] x) {
for(int i=0; i < x.length; i++) {
for(int j=0; j < x.length; j++) {
if (i 1= § && x[i] == xI[j])
return false;
}
}

return true;

10/7/15

+ Quadratic Growth Rate (cont.)

The for loop with i as index will execute
x.length times

The for loop with j asindex will execute
x.length times

The total number of times the inner loop will
execute is (x.length) ?

The growth rate has an order of n? or

Oom?)

O If processing time i
inputs n, the algorj

public st¥atic boolean areUnique(int[] x) {

for(int i=0; i < x.length; i++) {

for(int j=0; j < x.length; j++) {

if (i = j & x[i] == xI[j])
return false;

¥
¥
return true;

}

+ Big-O Notation

O The O() in the previous examples can be thought of as an
abbreviation of "order of magnitude"

O A simple way to determine the big-O notation of an algorithm is
to look at the loops and to see whether the loops are nested

O Assuming a loop body consists only of simple statements,
o a single loop is O(n)
O a pair of nested loops is O(n?)

O a nested pair of loops inside another is O(n®)
O andsoon...

10/7/15

+ Big-O Notation (cont.)

O You must also examine the number of times a loop is executed
for(i=1; 1 < x.length; 1 *= 2) {
// Do something with x[1i]
}

O The loop body will execute k-1 times, with 1 having the following values:

1,2,4,8,16,...,2F
until 2¥ is greater than x . length

O Since 2¥! = x.length < 2¥and log,2* is k, we know that k-1 =
log,(x.length) <k

O Thus we say the loop is O(log n) (in analyzing algorithms, we use logarithms
to the base 2)

O Logarithmic functions grow slowly as the number of data items n increases

+ Formal Definition of Big-O

O Consider the following program structure:

for (int 1 = 0; 1 < n; i++) {
for (int j = 0; j < n; j++) {
Simple Statement

}
for (int i = 0; 1 < n; i++) {
Simple Statement 1
Simple Statement 2
Simple Statement 3
Simple Statement 4
Simple Statement 5
}
Simple Statement 6
Simple Statement 7

Simple Statement 30

10/7/15

+ Formal Definition of Big-O (cont.

O Consider the following program structure:

for (int i = 0; i < n; it+4) { / This nested loop
for (int 3§ = 0; 3 < n; ++) { executes a Simple
Simple Statement Statement n? times

}
for (int i = 0; 1 < n; i++) {
Simple Statement 1
Simple Statement 2
Simple Statement 3
Simple Statement 4
Simple Statement 5
}
Simple Statement 6
Simple Statement 7

Simple Statement 30

+ Formal Definition of Big-O (cont.

O Consider the following program structure:

for (int 1 = 0; 1 < n; i++) {
for (int j = 0; j < n; j++) {
Simple Statement

}

for (int i = 0; 1 < n; i++) {
Simple Statement 1
Simple Statement 2 This loop executes 5
Simple Statement 3 Simple Statements n
Simple Statement 4 times (51’1)

Simple Statement 5

}
Simple Statement 6
Simple Statement 7

Simple Statement 30

10/7/15

+ Formal Definition of Big-O (cont.

O Consider the following program structure:

for (int 1 = 0; 1 < n; i++) {
for (int j = 0; j < n; j++) {
Simple Statement

}

for (int i = 0; 1 < n; i++) {
Simple Statement 1
Simple Statement 2

Simple Statement 3

Simple Statement 4

Simple Statement 5
} Finally, 25 Simple
Simple Statement 6 Statements are
Simple Statement 7 executed
Simple Statement 30

+ Formal Definition of Big-O (cont.‘l

O Consider the following program structure:

for (int 1 = 0; 1 < n; i++) {
for (int j = 0; j < n; j++) {

Simple Statement
P We can conclude that the

) relationship between processing

for (int i = 0; i < n; i++) { time and n (the number of date
Simple Statement 1 items processed) is:
Simple Statement 2
Simple Statement 3 — .2
Simple Statement 4 T(n) =n + sn + 25
Simple Statement 5

}
Simple Statement 6
Simple Statement 7

Simple Statement 30

10/7/15

+ Formal Definition of Big-O (cont.

O

In terms of T(n),
T(n) = O(f(n))

There exist
O two constants, n, and ¢, greater than zero, and
o a function, f(n),

such that for all n > n,, cf(n) = T(n)
In other words, as n gets sufficiently large (larger than n;), there is
some constant ¢ for which the processing time will always be less

than or equal to cf(n)

cf(n) is an upper bound on performance

+ Formal Definition of Big-O (cont.‘l

O

O

O

The growth rate of f(n) will be determined by the fastest growing
term, which is the one with the largest exponent

In the example, an algorithm of
O(n? + 5n + 25)
is more simply expressed as
O(n?)

In general, it is safe to ignore all constants and to drop the lower-
order terms when determining the order of magnitude

10/7/15

+ Big-O Example 1 |I
m Given T(n) = n? + 5n + 25, show that this is O(n?)

m Find constants n, and c so that, for all n > n,, cn? > n? + 8n + 25
m Find the point where cn? = n? + 5n + 25
m Let n = n,, and solve for ¢
c=1+5/ny,+ 25/ n,?

m When n, is 5(1 + 5/5 + 25/25),cis 3
m So,3n2>n?2+5n+25foralln>5

m Other values of n; and c also work

+ Big-O Example 1 (cont.)

200

180

160

140

= 100
n* + S5n + 25
80

60

40

10/7/15

10

10/7/15

+ Big-O Example 2

m Programming problem 1 shows
yl = 100 * n + 10;
y2 =5 3% n xn + 2;

m It asks to write a program that compares yl and y2 for values of n
up to 100 in increments of 10

m Before writing the code, at what value of n will y2 consistently be
greater than y1°?

m How does this relate to the problem:
BETn)=58*n*n+2+100*n+ 10
= for what values of n0 and ¢ n*n consistently larger than T(n)

+ Big-O Example 3

m Consider the following loop
for (int 1 = 0; 1 < n; i++) |
for (int 3 =1 + 1; j < n; j++) {
3 simple statements
}
mTn)=3n-1)+3@n-2)+...+3
m Factoring out the 3,

3n-1+n-2 +n-3+...+1)

ml+2+...+n-1=0mx(n-1))/2

11

+ Big-O Example 3 (cont.)

m Therefore T(n) = 1.5n2 - 1.5n
m When n = 0, the polynomial has the value 0
m For values of n > 1,1.5n%2 > 1.5n%2 - 1.5n

m Therefore T(n) is O(n?) whenn,is 1 and cis 1.3

+ Big-O Example 2 (cont.)

10

1.572> - 1.5n

n

10/7/15

12

10/7/15

+ Symbols Used in Quantifying
Performance

Symbol Meaning

T(n The time that a method or program takes as a function of the number of
prog
inputs, 7. We may not be able to measure or determine this exactly.

f(n) Any function of 7. Generally, f(1) will represent a simpler function than
T(n), for example, 72 rather than 1.572> — 1.5n.

O(f(n)) Order of magnitude. O(f(n)) is the set of functions that grow no faster
than f(n2). We say that T(n) = O(f(n)) to indicate that the growth of T(n) is
bounded by the growth of f().

+ Common Growth Rates

Big-O Name

O(1) Constant
O(log n) Logarithmic
O(n) Linear

O(n log n) Log-linear
O(n?) Quadratic
O(n?) Cubic
O(2m) Exponential
O(n!) Factorial

13

+ Different Growth Rates

15,000

10,000

~
-~

~—
—

5,000

Exponential

e
Ch A
i)

-n"
=0
S

-

i
-

P
CC

e
T

40
n

60

+ Effects of Different Growth Rates

olf(n) £(50) £(100) £(100)/£(50)
O(1) 1 1 1

O(log n) 5.64 6.64 1.18

O(n) 50 100 2

O(n log n) 282 664 2.35

O(n?) 2500 10,000 4

o) 12,500 100,000 8

O(27) 1.126 x 103 1.27 x 103 1.126 x 103
O(n!) 3.0 x 10%4 9.3 x 10%57 3.1x10%

10/7/15

14

+ Algorithms with Exponential and
Factorial Growth Rates

m Algorithms with exponential and factorial growth rates have an
effective practical limit on the size of the problem they can be
used to solve

m With an O(2") algorithm, if 100 inputs takes an hour then,
= 101 inputs will take 2 hours
= 105 inputs will take 32 hours
m 114 inputs will take 16,384 hours (almost 2 years!)

+ Algorithms with Exponential and
Factorial Growth Rates (cont.)

m Encryption algorithms take advantage of this characteristic

m Some cryptographic algorithms can be broken in O(2") time,
where n is the number of bits in the key

m A key length of 40 is considered breakable by a modern
computer,

m but a key length of 100 bits will take a billion-billion (10'8) times
longer than a key length of 40

10/7/15

15

ArrayList implementation

m Version One: Fixed array

m Version Two:

Making it Generic

m Version Three: Dynamic Array

*.
Simplified List Interface (ADT)

public interface SimplifiedList {

public
public

public
public
public
public
public
public
public

public

boolean add(Object item);
boolean add(int index, Object item);

Object remove(int index);

Object set(int index, Object item);
Object get(int index);

boolean contains (Object item);
boolean isEmpty();

void clear();

int size();

boolean isFull();

} // interface SimplifiedList

10/7/15

16

10/7/15

+
Implementing SimplifiedList

= Data Structure#l: fixed size array (capacity)
m Use an array of Object to store stuff
m A variable to store # entries in it

m Its capacity (max size)

Version 2: Making it Generic

m Change the interface and the class

17

+
Simplified List Interface (ADT)
<Generic>

public interface SimplifiedList<E> {
public boolean add(E item);
public boolean add(int index, E item);

public E remove(int index);
public E set(int index, E item);
public E get(int index);

public boolean contains (E item);
public boolean isEmpty();
public void clear();

public int size();

public boolean isFull();
} // interface SimplifiedList

Version 3: Using flexible arrays

m add a method called void reallocate() that
m is called when adding to an array that is at capacity

m doubles the size of the array copying the current values to the
new values.

private void reallocate() {
capacity = 2 x capacity;
theData = Arrays.copyOf(theData, capacity);

10/7/15

18

+ Performance of ArrayLists |I
|| FixedSize Array | Dynamic Array _
add(o) 0o(1) O(n)

add(i, o) O(n) 0O(n)
remove(i) O(n) O(n)
set(i, o) 0(1) 0(1)
get(i) o(1) o(1)
contains(o) O(n) O(n)
clear(), size(), 0O(1) 0O(1)
isEmpty()

10/7/15

19

