

## + Algorithm Efficiency and Big-O

- Getting a precise measure of the performance of an algorithm is difficult
- Big-O notation expresses the performance of an algorithm as a function of the number of items to be processed
- This permits algorithms to be compared for efficiency
- For more than a certain number of data items, some problems cannot be solved by any computer


## + Linear Growth Rate

If processing time increases in proportion to the number of inputs $n$, the algorithm grows at a linear rate

```
public static int search(int[] x, int target) {
    for(int i=0; i < x.length; i++) {
        if (x[i]==target)
            return i;
    }
    return -1; // target not found
}
```


## + Linear Growth Rate

If the target is not present, the for loop will execute x . length times

- If the target is present the for loop will execute (on average) (x.length +1 ) $/ 2$ times
If processing time In . Therefore, the total execution time is
$n$, the algorithm frov directly proportional to x . length
- This is described as a growth rate of order $n$ OR
- O(n)
public static int search(int[] $x$, int target) \{
for(int i=0; i < x.length; i++) \{
if (x[i]==target)
return i;
\}
return -1; // target not found
\}


## + n x m Growth Rate

- Processing time can be dependent on two different inputs


```
public static boolean areDifferent(int[] x, int[] y) {
    for(int i=0; i < x.length; i++) {
        if (search(y, x[i]) != -1)
            return false;
    }
    return true;
}
```

```
+ n x m Growth Rate (cont.)
    The for loop will execute x.length times
    - Processing time can 
        But it will call search, which will execute
                                y.length times
                                    The total execution time is proportional to
                        (x.length * y.length)
                        The growth rate has an order of n x m or
                O(n x m)
    public st\notftic boolean areDifferent(int[] x, int[] y) {
        for(int i=0; i < x.length; i++) {
            if (search(y, x[i]) != -1)
                return false;
    }
    return true;
    }
```


## + Quadratic Growth Rate

$\square$ If processing time is proportional to the square of the number of inputs $n$, the algorithm grows at a quadratic rate $\left(n^{2}\right)$

```
public static boolean areUnique(int[] x) {
    for(int i=0; i < x.length; i++) {
        for(int j=0; j < x.length; j++) {
            if (i != j && x[i] == x[j])
                return false;
        }
    }
    return true;
}
```


## + Quadratic Growth Rate (cont.)

The for loop with i as index will execute x.length times

The for loop with $j$ as index will execute
$\square$ If processing time is $p$ inputs $n$, the algorithn
x.length times

The total number of times the inner loop will execute is (x.length) ${ }^{2}$
The growth rate has an order of $n^{2}$ or
$\mathrm{O}\left(\mathrm{n}^{2}\right)$
public static boolean areUnique(int[] x) \{
for(int i=0; i < x.length; i++) \{
for(int $\mathrm{j}=0$; j < x.length; $\mathrm{j}++$ ) \{
if (i != j \&\& x[i] == x[j])
return false;
\}
\}
return true;
\}

## + Big-O Notation

$\square$ The $O()$ in the previous examples can be thought of as an
 abbreviation of "order of magnitude"
$\square$ A simple way to determine the big-O notation of an algorithm is to look at the loops and to see whether the loops are nested
$\square$ Assuming a loop body consists only of simple statements,

- a single loop is $O(n)$
- a pair of nested loops is $O\left(n^{2}\right)$
- a nested pair of loops inside another is $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- and so on...


## + Big-O Notation (cont.)

- You must also examine the number of times a loop is executed for (i=1; $i<x$.length; $i *=2$ ) \{ // Do something with x[i] \}
$\square$ The loop body will execute $k$-l times, with $i$ having the following values: $1,2,4,8,16, \ldots, 2^{k}$
until $2^{k}$ is greater than x . length
- Since $2^{k-1}=x$. length $<2^{k}$ and $\log _{2} 2^{k}$ is $k$, we know that $k-1=$ $\log _{2}($ x.length $)<k$
- Thus we say the loop is $\mathrm{O}(\log n$ ) (in analyzing algorithms, we use logarithms to the base 2)
$\square$ Logarithmic functions grow slowly as the number of data items n increases


## + Formal Definition of Big-O

- Consider the following program structure:
for (int $i=0$; $i<n$; $i++$ ) $\{$
for (int $j=0 ; j<n ; j++$ ) \{
Simple Statement
\}
\}
for (int $i=0 ; i<n$; i++) $\{$
Simple Statement 1
Simple Statement 2
Simple Statement 3
Simple Statement 4
Simple Statement 5
\}
Simple Statement 6
Simple Statement 7

Simple Statement 30

## + Formal Definition of Big-O (cont.)

$\square$ Consider the following program structure:
for (int $i=0 ; i<n$; $i++$ ) $\{$
for (int $j=0 ; j<n$; $j++$ ) \{
Simple Statement
\}
\}
for (int $i=0 ; i<n$; $i++$ ) \{
Simple Statement 1
Simple Statement 2
Simple Statement 3
Simple Statement 4
Simple Statement 5
\}
Simple Statement 6
Simple Statement 7

Simple Statement 30

# + Formal Definition of Big-O (cont.) 

- Consider the following program structure:

This nested loop executes a Simple Statement $n^{2}$ times

## + Formal Definition of Big-O (cont.)

$\square$ Consider the following program structure:

```
for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            Simple Statement
        }
    }
    for (int i = 0; i < n; i++) {
        Simple Statement 1
        Simple Statement }
        Simple Statement 3
        Simple Statement 4
        Simple Statement 5
    }
    Simple Statement 6
    Simple Statement }
    Simple Statement }3
```



# + Formal Definition of Big-O (cont.) 

- Consider the following program structure:
for (int $i=0 ; i<n ; i++$ )
for (int $j=0 ; j<n$; j++) \{
Simple Statement
\}
\}
for (int $i=0 ; i<n$; $i++$ )
Simple Statement 1
Simple Statement 2
Simple Statement 3
Simple Statement 4
Simple Statement 5
\}
Simple Statement 6
Simple Statement 7
Simple Statement 30


## + Formal Definition of Big-O (cont.)

- In terms of $T(n)$,

$$
\mathrm{T}(n)=\mathrm{O}(\mathrm{f}(n))
$$

- There exist
- two constants, $n_{0}$ and $c$, greater than zero, and
- a function, $\mathrm{f}(n)$,
- such that for all $n>n_{0}, \operatorname{cf}(n)=\mathrm{T}(n)$
$\square$ In other words, as $n$ gets sufficiently large (larger than $n_{0}$ ), there is some constant $c$ for which the processing time will always be less than or equal to $\mathrm{cf}(n)$
$\square \operatorname{cf}(n)$ is an upper bound on performance


## + Formal Definition of Big-O (cont.)

$\square$ The growth rate of $f(n)$ will be determined by the fastest growing term, which is the one with the largest exponent
$\square$ In the example, an algorithm of

$$
\mathrm{O}\left(n^{2}+5 n+25\right)
$$

is more simply expressed as

$$
\mathrm{O}\left(n^{2}\right)
$$

$\square$ In general, it is safe to ignore all constants and to drop the lowerorder terms when determining the order of magnitude

## + Big-O Example 1

- Given $T(n)=n^{2}+5 n+25$, show that this is $\mathrm{O}\left(n^{2}\right)$
$■$ Find constants $n_{0}$ and c so that, for all $n>n_{0}, \mathrm{cn}^{2}>n^{2}+5 n+25$
- Find the point where $\mathrm{c} n^{2}=n^{2}+5 n+25$
- Let $n=n_{0}$, and solve for c $\mathrm{c}=1+5 / n_{0},+25 / n_{0}{ }^{2}$
- When $n_{0}$ is $5(1+5 / 5+25 / 25)$, c is 3
- So, $3 n^{2}>n^{2}+5 n+25$ for all $n>5$

■ Other values of $n_{0}$ and c also work

## + Big-O Example 1 (cont.)



## + Big-O Example 2

- Programming problem 1 shows $\mathrm{y} 1=100 * \mathrm{n}+10 ;$ $\mathrm{y} 2=5 * \mathrm{n} * \mathrm{n}+2$;
- It asks to write a program that compares yl and y2 for values of $n$ up to 100 in increments of 10
- Before writing the code, at what value of $n$ will $y 2$ consistently be greater than yl?
- How does this relate to the problem:
- $T(n)=5 * n * n+2+100 * n+10$
- for what values of n 0 and $\mathrm{c} n * \mathrm{n}$ consistently larger than $\mathrm{T}(\mathrm{n})$


## + Big-O Example 3

- Consider the following loop

```
for (int i = 0; i < n; i++) {
    for (int j = i + 1; j < n; j++) {
            3 simple statements
        }
    }
```

$\square T(n)=3(n-1)+3(n-2)+\ldots+3$

- Factoring out the 3,

$$
3(n-1+n-2+n-3+\ldots+1)
$$

$■ 1+2+\ldots+n-1=(n \times(n-1)) / 2$

## + Big-O Example 3 (cont.)

- Therefore $T(n)=1.5 n^{2}-1.5 n$


■ When $n=0$, the polynomial has the value 0
■ For values of $n>1,1.5 n^{2}>1.5 n^{2}-1.5 n$
■ Therefore $T(n)$ is $\mathrm{O}\left(n^{2}\right)$ when $n_{0}$ is l and c is 1.5

## + Big-O Example 2 (cont.)



## + Symbols Used in Quantifying Performance

| Symbol | Meaning |
| :--- | :--- |
| $\mathrm{T}(n)$ | The time that a method or program takes as a function of the number of <br> inputs, $n$. We may not be able to measure or determine this exactly. |
| $\mathrm{f}(n)$ | Any function of $n$. Generally, $\mathrm{f}(n)$ will represent a simpler function than <br> $\mathrm{T}(n)$, for example, $n^{2}$ rather than $1.5 n^{2}-1.5 n$. |
| $\mathrm{O}(\mathrm{f}(n))$ | Order of magnitude. $\mathrm{O}(\mathrm{f}(n))$ is the set of functions that grow no faster <br> than $\mathrm{f}(n)$. We say that $\mathrm{T}(n)=\mathrm{O}(\mathrm{f}(n))$ to indicate that the growth of $\mathrm{T}(n)$ is <br> bounded by the growth of $\mathrm{f}(n)$. |

## + Common Growth Rates

| Big-O | Name |
| :--- | :--- |
| $\mathrm{O}(1)$ | Constant |
| $\mathrm{O}(\log n)$ | Logarithmic |
| $\mathrm{O}(n)$ | Linear |
| $\mathrm{O}(n \log n)$ | Log-linear |
| $\mathrm{O}\left(n^{2}\right)$ | Quadratic |
| $\mathrm{O}\left(n^{3}\right)$ | Cubic |
| $\mathrm{O}\left(2^{n}\right)$ | Exponential |
| $\mathrm{O}(n!)$ | Factorial |
|  |  |



## + Effects of Different Growth Rates



| $\mathrm{O}(\mathrm{f}(n))$ | $\mathbf{f}(50)$ | $\mathbf{f ( 1 0 0 )}$ | $\mathrm{f}(100) / f(50)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{O}(1)$ | 1 | 1 | 1 |
| $\mathrm{O}(\log n)$ | 5.64 | 6.64 | 1.18 |
| $\mathrm{O}(n)$ | 50 | 100 | 2 |
| $\mathrm{O}(n \log n)$ | 282 | 664 | 2.35 |
| $\mathrm{O}\left(n^{2}\right)$ | 2500 | 10,000 | 4 |
| $\mathrm{O}\left(n^{3}\right)$ | 12,500 | 100,000 | 8 |
| $\mathrm{O}\left(2^{n}\right)$ | $1.126 \times 10^{15}$ | $1.27 \times 10^{30}$ | $1.126 \times 10^{15}$ |
| $\mathrm{O}(n!)$ | $3.0 \times 10^{64}$ | $9.3 \times 10^{157}$ | $3.1 \times 10^{93}$ |

## + Algorithms with Exponential and Factorial Growth Rates

■ Algorithms with exponential and factorial growth rates have an effective practical limit on the size of the problem they can be used to solve

- With an $\mathrm{O}\left(2^{n}\right)$ algorithm, if 100 inputs takes an hour then,
- 101 inputs will take 2 hours
- 105 inputs will take 32 hours
- 114 inputs will take 16,384 hours (almost 2 years!)


## + Algorithms with Exponential and Factorial Growth Rates (cont.)

- Encryption algorithms take advantage of this characteristic
- Some cryptographic algorithms can be broken in $\mathrm{O}\left(2^{n}\right)$ time, where $n$ is the number of bits in the key
- A key length of 40 is considered breakable by a modern computer,
- but a key length of 100 bits will take a billion-billion ( $10^{18}$ ) times longer than a key length of 40


## $+$ <br> ArrayList implementation

- Version One: Fixed array
- Version Two: Making it Generic
- Version Three: Dynamic Array


## ${ }^{+}$Simplified List Interface (ADT)

public interface SimplifiedList \{ public boolean add(Object item); public boolean add(int index, Object item);
public Object remove(int index);
public Object set(int index, Object item); public Object get(int index);
public boolean contains (Object item);
public boolean isEmpty();
public void clear(); public int size();
public boolean isFull();
\} // interface SimplifiedList

## ${ }^{+}$Implementing SimplifiedList

- Data Structure\#1: fixed size array (capacity)
- Use an array of Object to store stuff
- A variable to store \# entries in it
- Its capacity (max size)


## ${ }^{+}$Version 2: Making it Generic

- Change the interface and the class


## $+$ <br> Simplified List Interface (ADT) <Generic>

```
    public interface SimplifiedList<E> {
        public boolean add(E item);
        public boolean add(int index, E item);
        public E remove(int index);
        public E set(int index, E item);
        public E get(int index);
        public boolean contains (E item);
        public boolean isEmpty();
        public void clear();
        public int size();
        public boolean isFull();
    } // interface SimplifiedList
```


## $+$ <br> Version 3: Using flexible arrays



- add a method called void reallocate() that
- is called when adding to an array that is at capacity
- doubles the size of the array copying the current values to the new values.
private void reallocate() \{
capacity = 2 * capacity;
theData $=$ Arrays.copy0f(theData, capacity);
\}

| + Performance of ArrayLists |  |  |
| :---: | :---: | :---: |
|  | Fixed Size Array | Dynamic Array |
| add(0) | O(1) | $\mathrm{O}(\mathrm{n})$ |
| add(i, o) | O(n) | $\mathrm{O}(\mathrm{n})$ |
| remove(i) | $\mathrm{O}(\mathrm{n})$ | $\mathrm{O}(\mathrm{n})$ |
| set(i, o) | O(1) | O(1) |
| get(i) | O(1) | O(1) |
| contains(0) | O(n) | $\mathrm{O}(\mathrm{n})$ |
| clear(), size(), isEmpty() | O(1) | O(1) |

