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+ Algorithm Efficiency and Big-O 

n Getting a precise measure of the performance of an 
algorithm is difficult 

n Big-O notation expresses the performance of an 
algorithm as a function of the number of items to be 
processed 

n This permits algorithms to be compared for efficiency 
n For more than a certain number of data items, some 

problems cannot be solved by any computer 

+ Linear Growth Rate 

¨  If processing time increases in proportion to the number of inputs 
n, the algorithm grows at a linear rate 

 
 

 

public static int search(int[] x, int target) { !
  for(int i=0; i < x.length; i++) { !
    if (x[i]==target) !
      return i; !
  } !
  return -1; // target not found !
} !
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+ Linear Growth Rate 

¨  If processing time increases in proportion to the number of inputs 
n, the algorithm grows at a linear rate 

 
 

 

public static int search(int[] x, int target) { !
  for(int i=0; i < x.length; i++) { !
    if (x[i]==target) !
      return i; !
  } !
  return -1; // target not found !
} !

•  If the target is not present, the for loop will 
execute x.length times 

•  If the target is present the for loop will 
execute (on average) (x.length + 1)/2 
times 

•  Therefore, the total execution time is 
directly proportional to x.length 

•  This is described as a growth rate of order n  
OR 

•  O(n) 

+ n x m Growth Rate 

n  Processing time can be dependent on two different inputs 

 

 

public static boolean areDifferent(int[] x, int[] y) { !
  for(int i=0; i < x.length; i++) { !
    if (search(y, x[i]) != -1) !
      return false; !
  } !
  return true; !
} !
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+ n x m Growth Rate (cont.) 

n  Processing time can be dependent on two different inputs. 

 

 

public static boolean areDifferent(int[] x, int[] y) { !
  for(int i=0; i < x.length; i++) { !
    if (search(y, x[i]) != -1) !
      return false; !
  } !
  return true; !
} !

•  The for loop will execute x.length times 
•  But it will call search, which will execute 

y.length times 
•  The total execution time is proportional to 

(x.length * y.length) 
•  The growth rate has an order of n x m or 
•  O(n x m) 

+ Quadratic Growth Rate 

¨  If processing time is proportional to the square of the number of 
inputs n, the algorithm grows at a quadratic rate (n2) 

 
public static boolean areUnique(int[] x) { !
  for(int i=0; i < x.length; i++) { !
    for(int j=0; j < x.length; j++) { !
      if (i != j && x[i] == x[j]) !
        return false; !
    } !
  } !
  return true; !
} !
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+ Quadratic Growth Rate (cont.) 

¨  If processing time is proportional to the square of the number of 
inputs n, the algorithm grows at a quadratic rate 

 
 
public static boolean areUnique(int[] x) { !
  for(int i=0; i < x.length; i++) { !
    for(int j=0; j < x.length; j++) { !
      if (i != j && x[i] == x[j]) !
        return false; !
    } !
  } !
  return true; !
} !

•  The for loop with i as index will execute 
x.length times 

•  The for loop with j as index will execute 
x.length times 

•  The total number of times the inner loop will 
execute is (x.length)2 

•  The growth rate has an order of  n2 or 
•  O(n2) 

+ Big-O Notation 

¨  The O() in the previous examples can be thought of as an 
abbreviation of "order of magnitude" 

¨  A simple way to determine the big-O notation of an algorithm is 
to look at the loops and to see whether the loops are nested 

¨  Assuming a loop body consists only of simple statements, 
¤  a single loop is O(n) 

¤  a pair of nested loops is O(n2) 

¤  a nested pair of loops inside another is O(n3) 

¤  and so on . . . 
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+ Big-O Notation (cont.) 

¨  You must also examine the number of times a loop is executed 
for(i=1; i < x.length; i *= 2) { 
   // Do something with x[i] 

} 

¨  The loop body will execute k-1 times, with i having the following values:  
            1, 2, 4, 8, 16, . . ., 2k  
until 2k is greater than x.length 

¨  Since 2k-1 = x.length < 2k and log22k is k, we know that k-1 = 
log2(x.length) < k 

¨  Thus we say the loop is O(log n)  (in analyzing algorithms, we use logarithms 
to the base 2) 

¨  Logarithmic functions grow slowly as the number of data items n increases 

+ Formal Definition of Big-O 

¨  Consider the following program structure: 
 
for (int i = 0; i < n; i++) { 

  for (int j = 0; j < n; j++) { 
           Simple Statement 
  } 
} 

for (int i = 0; i < n; i++) { 
     Simple Statement  1   
     Simple Statement 2 
   Simple Statement 3 
   Simple Statement 4 
   Simple Statement 5   
} 
 Simple Statement 6 
 Simple Statement 7 
... 

 Simple Statement 30   
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+ Formal Definition of Big-O (cont.) 

¨  Consider the following program structure: 
 
for (int i = 0; i < n; i++) { 

  for (int j = 0; j < n; j++) { 
           Simple Statement 
  } 
} 

for (int i = 0; i < n; i++) { 
     Simple Statement  1   
     Simple Statement 2 
   Simple Statement 3 
   Simple Statement 4 
   Simple Statement 5   
} 
 Simple Statement 6 
 Simple Statement 7 
... 

 Simple Statement 30   

This nested loop 
executes a Simple 

Statement  n2  times 

+ Formal Definition of Big-O (cont.) 

¨  Consider the following program structure: 
 
for (int i = 0; i < n; i++) { 

  for (int j = 0; j < n; j++) { 
           Simple Statement 
  } 
} 

for (int i = 0; i < n; i++) { 
     Simple Statement  1   
     Simple Statement 2 
   Simple Statement 3 
   Simple Statement 4 
   Simple Statement 5   
} 
 Simple Statement 6 
 Simple Statement 7 
... 

 Simple Statement 30   

This loop executes 5 
Simple Statements  n 

times (5n) 
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+ Formal Definition of Big-O (cont.) 

¨  Consider the following program structure: 
 
for (int i = 0; i < n; i++) { 

  for (int j = 0; j < n; j++) { 
           Simple Statement 
  } 
} 

for (int i = 0; i < n; i++) { 
     Simple Statement  1   
     Simple Statement 2 
   Simple Statement 3 
   Simple Statement 4 
   Simple Statement 5   
} 
 Simple Statement 6 
 Simple Statement 7 
... 

 Simple Statement 30   

Finally, 25 Simple 
Statements  are 

executed 

+ Formal Definition of Big-O (cont.) 

¨  Consider the following program structure: 
 
for (int i = 0; i < n; i++) { 

  for (int j = 0; j < n; j++) { 
           Simple Statement 
  } 
} 

for (int i = 0; i < n; i++) { 
     Simple Statement  1   
     Simple Statement 2 
   Simple Statement 3 
   Simple Statement 4 
   Simple Statement 5   
} 
 Simple Statement 6 
 Simple Statement 7 
... 

 Simple Statement 30   

We can conclude that the 
relationship between processing 
time and n (the number of date 

items processed)  is: 
 

T(n) = n2 + 5n + 25 
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+ Formal Definition of Big-O (cont.) 

¨  In terms of T(n), 

T(n) = O(f(n)) 

¨  There exist  
¤  two constants, n0 and c, greater than zero, and 
¤  a function, f(n),  

¨  such that for all n > n0, cf(n) = T(n) 

¨  In other words, as n gets sufficiently large (larger than n0), there is 
some constant c for which the processing time will always be less 
than or equal to cf(n) 

¨  cf(n) is an upper bound on performance 

+ Formal Definition of Big-O (cont.) 

¨  The growth rate of f(n) will be determined by the fastest growing 
term, which is the one with the largest exponent 

¨  In the example, an algorithm of  

O(n2 + 5n + 25)  

 is more simply expressed as  

O(n2) 

¨  In general, it is safe to ignore all constants and to drop the lower-
order terms when determining the order of magnitude 
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+ Big-O Example 1 

n  Given T(n) = n2 + 5n + 25, show that this is O(n2) 

n  Find constants n0 and c so that, for all n > n0, cn2  > n2 + 5n + 25 
n  Find the point where cn2  = n2 + 5n + 25 

n  Let n = n0, and solve for c 

c = 1 + 5/ n0, + 25/ n0
 2  

n  When n0 is 5(1 + 5/5 + 25/25), c is 3 

n  So, 3n2 > n2 + 5n + 25 for all n > 5 

n  Other values of n0 and c also work 

+ Big-O Example 1 (cont.) 
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+ Big-O Example 2 

n  Programming problem 1 shows 
y1 = 100 * n + 10; !
y2 = 5 * n * n + 2;  

n  It asks to write a program that compares y1 and y2 for values of n 
up to 100 in increments of 10 

n  Before writing the code, at what value of n will y2 consistently be 
greater than y1? 

n  How does this relate to the problem: 
n  T(n) =  5 * n * n + 2 + 100 * n + 10 

n  for what values of n0 and c  n*n  consistently larger than T(n) 

+ Big-O Example 3 

n  Consider the following loop 
for (int i = 0; i < n; i++) { 

  for (int j = i + 1; j < n; j++) { 

           3 simple statements 

  } 

} 

n  T(n) = 3(n – 1) + 3 (n – 2) + … + 3 

n  Factoring out the 3,  

 3(n – 1 + n – 2  + n – 3 + … + 1) 

n  1 + 2 + … + n – 1 = (n x (n-1))/2 
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+ Big-O Example 3 (cont.) 

n  Therefore T(n) = 1.5n2 – 1.5n 

n  When n = 0, the polynomial has the value 0 

n  For values of n > 1, 1.5n2 > 1.5n2 – 1.5n 

n  Therefore T(n)  is O(n2) when n0 is 1 and c is 1.5 

+ Big-O Example 2 (cont.) 
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+ Symbols Used in Quantifying 
Performance 

+ Common Growth Rates 
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+ Different Growth Rates 

+ Effects of Different Growth Rates 
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+ Algorithms with Exponential and 
Factorial Growth Rates 

n  Algorithms with exponential and factorial growth rates have an 
effective practical limit on the size of the problem they can be 
used to solve 

n  With an O(2n) algorithm, if 100 inputs takes an hour then,  
n  101 inputs will take 2 hours 

n  105 inputs will take 32 hours 

n  114 inputs will take 16,384 hours (almost 2 years!) 

+ Algorithms with Exponential and 
Factorial Growth Rates (cont.) 

n  Encryption algorithms take advantage of this characteristic 

n  Some cryptographic algorithms can be broken in O(2n) time, 
where n is the number of bits in the key  

n  A key length of 40 is considered breakable by a modern 
computer,  

n  but a key length of 100 bits will take a billion-billion (1018) times 
longer than a key length of 40 
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+
ArrayList implementation 

n  Version One: Fixed array 

n  Version Two:  Making it Generic 

n  Version Three: Dynamic Array 

+
Simplified List Interface (ADT) 

public interface SimplifiedList { !
public boolean add(Object item); !
public boolean add(int index, Object item); !

!
public Object remove(int index); !
public Object set(int index, Object item); !
public Object get(int index); !

!
public boolean contains (Object item); !

!
public boolean isEmpty(); !
public void clear(); !
public int size(); !

!
public boolean isFull(); !

 } // interface SimplifiedList!
!
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+
Implementing SimplifiedList 

n  Data Structure#1: fixed size array (capacity) 

n  Use an array of Object to store stuff 

n  A variable to store # entries in it 

n  Its capacity (max size) 

+
Version 2: Making it Generic  

n  Change the interface and the class 
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+
Simplified List Interface (ADT) 
<Generic> 

public interface SimplifiedList<E> { !
public boolean add(E item); !
public boolean add(int index, E item); !

!
public E remove(int index); !
public E set(int index, E item); !
public E get(int index); !

!
public boolean contains (E item); !

!
public boolean isEmpty(); !
public void clear(); !
public int size(); !

!
public boolean isFull(); !

 } // interface SimplifiedList!
!

+
Version 3: Using flexible arrays  

n  add a method called void reallocate() that 
n  is called when adding to an array that is at capacity 

n  doubles the size of the array copying the current values to the 
new values. 

private void reallocate() { !
   capacity = 2 * capacity; !
   theData = Arrays.copyOf(theData, capacity); !
}  
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+ Performance of ArrayLists 

	
  	
   Fixed	
  Size	
  Array	
   Dynamic	
  Array	
  
add(o)	
   O(1)	
   O(n)	
  
add(i,	
  o)	
   O(n)	
   O(n)	
  
remove(i)	
   O(n)	
   O(n)	
  
set(i,	
  o)	
   O(1)	
   O(1)	
  
get(i)	
   O(1)	
   O(1)	
  

contains(o)	
   O(n)	
   O(n)	
  
clear(),	
  size(),	
  
isEmpty()	
  

O(1)	
   O(1)	
  


